Este texto se ha escrito pensando en los alumnos que acceden a un primer curso universitario en el que el Cálculo Infinitesimal tenga un importante peso específico, como los de Ciencias Matemáticas y Físicas, Ingenierías, Ciencias Económicas y Empresariales, Informática y Arquitectura. Las actuales tendencias en los planes de estudio hacen aconsejable un curso como el que aquí se ofrece, en el que se estudia el Análisis Matemático para funciones en una sola variable: sucesiones de números reales; convergencia; funciones continuas; derivadas; integrales; series numéricas y de funciones. En el estudio de estas materias, que se aborda con el debido rigor, se huye de formalismos innecesarios. Se destacan y subrayan los asuntos básicos y troncales; todo lo demás se dispone a su alrededor como complementos y ayudas que se le brindan al lector, entre las que sobresalen sus abundantes ejemplos y ejercicios. Se ofrecen también numerosas colecciones de problemas con soluciones.Prólogo a la primera edición. Prólogo a la segunda edición. Capítulo 1. Sucesiones reales:límites. 1.1. Algo sobre los números racionales. 1.2. El sistema de los números reales. 1.3. Límites de sucesiones. 1.4. Cálculo y propiedades de los límites. 1.5. Acerca de los axiomas de R. 1.6. Propiedades de compleción. Ejercicios y problemas. Capítulo 2. Límites y continuidad de funciones reales. 2.1. Nociones generales sobre las funciones. 2.2. Límite de una función en un punto. 2.3. Cálculo y propiedades de los límites. 2.4. Continuidad en un punto. 2.5. Continuidad en un intervalo. 2.6. Continuidad uniforme. Ejercicios y problemas. Capítulo 3. Funciones derivables. 3.1. Derivadas. 3.2. Teoremas del valor medio. 3.3. Aproximación local de Taylor. 3.4. Estudio local de la gráfica de una función. Ejercicios y problemas. Capítulo 4. Integrales. 4.1. Funciones integrales (Riemann). 4.2. Propiedades de la integral. 4.3. El teorema fundamental del cálculo. 4.4. Búsqueda de primitivas. 4.5. La integral como límite de sumas. 4.6. Integración numérica aproximada. 4.7. Integrales impropias. 4.8. Aplicacines geométricas de la integral. Ejercicios y problemas. Capítulo 5. Series. 5.1. Concepto de serie. 5.2.Series de términos positivos; criterios de convergencia. 5.3. Series de términos positivos y negativos. 5.4. Sumación de series. 5.5. Series de potencias. Serie de Taylor. 5.6. Sucesiones y series de funciones. Ejercicios y problemas. Apéndice 1. Los números complejos. Apéndice 2. Polinomios reales y complejos. Apéndice 3. Fracciones racionales. Alfabeto griego. Referencias bibliográficas. Indice.
-5%
Antes:68,88 €
Depois de:65,44 €
IVA incluído
Se a sua compra exceder 19
Este texto se ha escrito pensando en los alumnos que acceden a un primer curso universitario en el que el Cálculo Infinitesimal tenga un importante peso específico, como los de Ciencias Matemáticas y Físicas, Ingenierías, Ciencias Económicas y Empresariales, Informática y Arquitectura. Las actuales tendencias en los planes de estudio hacen aconsejable un curso como el que aquí se ofrece, en el que se estudia el Análisis Matemático para funciones en una sola variable: sucesiones de números reales; convergencia; funciones continuas; derivadas; integrales; series numéricas y de funciones. En el estudio de estas materias, que se aborda con el debido rigor, se huye de formalismos innecesarios. Se destacan y subrayan los asuntos básicos y troncales; todo lo demás se dispone a su alrededor como complementos y ayudas que se le brindan al lector, entre las que sobresalen sus abundantes ejemplos y ejercicios. Se ofrecen también numerosas colecciones de problemas con soluciones.Prólogo a la primera edición. Prólogo a la segunda edición. Capítulo 1. Sucesiones reales:límites. 1.1. Algo sobre los números racionales. 1.2. El sistema de los números reales. 1.3. Límites de sucesiones. 1.4. Cálculo y propiedades de los límites. 1.5. Acerca de los axiomas de R. 1.6. Propiedades de compleción. Ejercicios y problemas. Capítulo 2. Límites y continuidad de funciones reales. 2.1. Nociones generales sobre las funciones. 2.2. Límite de una función en un punto. 2.3. Cálculo y propiedades de los límites. 2.4. Continuidad en un punto. 2.5. Continuidad en un intervalo. 2.6. Continuidad uniforme. Ejercicios y problemas. Capítulo 3. Funciones derivables. 3.1. Derivadas. 3.2. Teoremas del valor medio. 3.3. Aproximación local de Taylor. 3.4. Estudio local de la gráfica de una función. Ejercicios y problemas. Capítulo 4. Integrales. 4.1. Funciones integrales (Riemann). 4.2. Propiedades de la integral. 4.3. El teorema fundamental del cálculo. 4.4. Búsqueda de primitivas. 4.5. La integral como límite de sumas. 4.6. Integración numérica aproximada. 4.7. Integrales impropias. 4.8. Aplicacines geométricas de la integral. Ejercicios y problemas. Capítulo 5. Series. 5.1. Concepto de serie. 5.2.Series de términos positivos; criterios de convergencia. 5.3. Series de términos positivos y negativos. 5.4. Sumación de series. 5.5. Series de potencias. Serie de Taylor. 5.6. Sucesiones y series de funciones. Ejercicios y problemas. Apéndice 1. Los números complejos. Apéndice 2. Polinomios reales y complejos. Apéndice 3. Fracciones racionales. Alfabeto griego. Referencias bibliográficas. Indice.
Cálculo infinitesimal de una variable, 2ª Ed. do autor De Burgos Juan editado por MC GRAW HILL INTERAMERICANA no ano 2007.
Cálculo infinitesimal de una variable, 2ª Ed. tem um código ISBN 978-84-481-5634-3 e consiste em 656 Páginas. Neste caso, é o formato papel, mas não temos Cálculo infinitesimal de una variable, 2ª Ed. em formato ebook.
51,29 € 48,73 €
77,55 € 73,67 €
38,84 € 36,90 €
Anotese para receber novidades
Responsável pelo tratamento: Serlogal 2.0 S.L.; Contacto: protecciondatos@serlogal.com
Destinatários: Não estão previstas transferências de dados para empresas fora do nosso grupo.
Direitos: Acesso, Retificação, Limitação, Oposição e Portabilidade.
Informações detalhadas podem ser consultadas em nossa Política de Privacidade...